<u>Graphing Calculator Workshop Part #1</u> <u>Basic Operations and Graphing on the TI-84 Graphing Calculator</u>

Notes: Press the ENTER key for answers (ENTER means = sign)
To get back to the main screen, press 2nd, then Mode (the Quit function)

Exercises:

Turn the calculator ON CLEAR the screen

$$-9+5=$$

(Use the minus sign key for <u>leading</u> minus signs)

$$20-8 =$$

(Use the subtraction key between numbers)

$$\frac{5}{40} =$$

To write as a simplified fraction: MATH / ENTER / ENTER

$$\frac{7+8}{4+1} =$$

When + or – signs are in fractions ENCLOSE NUMERATOR AND

DENOMINATOR INSIDE PARENTHESIS!!!!

Exponents: There are 3 different ways to enter exponents with the calculator:

$$(-5)^2 = 25$$

Use squaring key " χ^2 " to square a number

$$4^3 =$$

Use MATH key and option #3 to cube a number

Use the "\rangle" key for entering exponents higher than 2 or 3 (with old style calculator, enter fractional exponents *in parenthesis*!!!)

Radicals: There are 3 different ways to enter radicals with the calculator:

$$\sqrt{81} =$$

Square root is above the χ^2 key, so we must press " $2^{nd} \chi^2$ "

$$\sqrt[3]{27} =$$

Use the MATH button and option #4 to find a cube root or $27^{(1/3)}$

$$\sqrt[4]{81} = \frac{\sqrt{244}}{2}$$

To enter a higher exponent, you must <u>first enter the index</u>, then press MATH, option #5, and finally enter the radicand

Check for Complex Mode (and change if needed)

 $\sqrt{-100}$ = _____ Press MODE, scroll down to "Real", scroll right to cover "a+bi", press ENTER, 2nd Quit

Graphing Calculator Workshop Part #1 Basic Operations and Graphing on the TI-83 or TI-84 Graphing Calculator

Sn.	ecial	C.	7m	hal	ءا
20	eciai	2	V III V	DO.	13

(8i)(2i) =	<i>i</i> is above the decimal point (use 2 nd key)				
Give the approximate v	value of π (above ^)	(to 3 decimal places):			
Give the approximate v	value of e (above \div)	(to 3 decimal places):			
4-20 =	_ 2 nd Catalog g	ives list with absolute value	at the top		

Graphing lines:

Enter the equation 3x + 6y = 5 (isolate y and enter into "y = " then press GRAPH) Find the point on the line where x = 3 (2nd TRACE; #1; 3; Enter)

Graphing Higher Level Functions:

Enter the equation $f(x) = -x^2 - x + 6$ (into "y =") and find:

- > local maximum:

Correctly enter the function $f(x) = \frac{1}{x+2}$ and find:

$$f(0) = \underline{\qquad \qquad (2^{\text{nd}} \text{ TRACE; 1:Value; } x = 0)}$$

$$f(-2) = \underline{\qquad \qquad (x = -2) \text{ what happens to } y^2}$$

$$f(-2) = \underline{\qquad} (x = -2) \text{ what happens to } y?$$

We can use the "Intersection" function to find the solution to an equation

$$x^2 - 5x + 3 = 2x - 7$$

- 1) set y_1 = left side and y_2 = right side
- 2) 2nd TRACE; #5: Intersect
- 3) Enter (our first "curve" (or equation) is in y_1)
- 4) Enter (our second "curve" (or equation) is in y_2)
- 5) Use the Left and Right arrows to get the curser close to the intersection we are looking at
- 6) Record your answer for the first solution x =
- 7) Repeat steps 2 through 6 and record your answer for the second solution x =

You can store the answer to your problem to use as a simplified way to check your answer:

- Enter solution #1 into the main screen of the calculator
- ➤ Press the STO→ button
- > Press the X,T,O,n button
- > Press ENTER
- Enter the left side of the equation; Press ENTER; Enter the right side of the equation; Press
- > The 2 numbers should be identical (or very close to it, depending on rounding error)

This technique can be used for LOTS of equations to check your work (especially useful on tests!).